通过使用基因芯片等技术分析人类基因组,可找出致病的遗传缺陷基因区域。癌症、糖尿病等,大部分是遗传基因缺陷引起的疾病。医学和生物学研究人员将能在数秒钟内鉴定出最终会导致癌症等的突变基因。借助一小滴测试液,医生们能预测药物对病人的功效,可诊断出药物在治疗过程中的不良反应,还能当场鉴别出病人受到了何种细菌、病毒或其他微生物的感染。利用基因芯片分析遗传基因,将使10年后对糖尿病的确诊率达到50%以上。
未来人们在体检时,由搭载基因芯片的诊断机器人对受检者取血,转瞬间体检结果便可以显示在计算机屏幕上。利用基因诊断,医疗将从千篇一律的“大众医疗”的时代,进一步精确到依据个人遗传基因而异的“定制医疗”的时代,也可以抽羊水进行产前基因诊断。
基因重组是由于不同dNA链的断裂和连接而产生dNA片段的交换和重新组合,形成新dNA分子的过程。1974年波兰斯吉巴尔斯基称基因重组为合成生物学,1978年他在《基因》期刊中写道:限制酶将带领我们进入合成生物学的新时代。
基因疗法是通过基因克隆、转基因等技术来复制,制造与自己相匹配的器官,能够解决一些智力,有生理缺陷的患者的难题。通过现症分析、基因分析技术,人工合成基因技术等,制造可以匹配的健全器官。
基因突变,一个基因内部可以遗传的结构的改变,又称为点突变,通常可引起一定的表型变化。广义的突变包括染色体畸变,狭义的突变专指点突变。实际上畸变和点突变的界限并不明确,特别是微细的畸变更是如此。野生型基因通过突变成为突变型基因。突变型一词既指突变基因,也指具有这一突变基因的个体。
生物体内控制基因表达的机制。基因表达的主要过程是基因的转录和信使核糖核酸的翻译。基因调控主要发生在3个水平上,即dNA修饰水平、RNA转录的调控、和mRNA翻译过程的控制,微生物通过基因调控可以改变代谢方式以适应环境的变化,这类基因调控一般是短暂的和可逆的,多细胞生物的基因调控是细胞分化、形态发生和个体发育的基础,这类调控一般是长期的,而且往往是不可逆的。基因调控的研究有广泛的生物学意义,是发生遗传学和分子遗传学的重要研究领域。
dNA分子类似“计算机磁盘”,拥有信息的保存、复制、改写等功能。将人体细胞核中的23对染色体中的dNA分子连接起来拉直,其长度大约为0.7米,但若把它折叠起来,又可以缩小为直径只有几微米的小球。因此,dNA分子被视为超高密度、大容量的分子存储器。
基因芯片经过改进,利用不同生物状态表达不同的数字后还可用于制造生物计算机。基于基因芯片和基因算法,未来的生物信息学领域,将有望出现能与当今的计算机业硬件巨头——英特尔公司、软件巨头——微软公司相匹敌的生物信息企业。