它们就在“那里”,从某个意义上来说数学家发现了它们,而不是创造了它们,沉思的外星文明也会发现同样的结构,不管是由人、计算机,还是外星文明来证明,这个定理都同样成立。
四层平行宇宙存在的证据
我们以猜测程度越来越高的顺序描述了四层平行宇宙,那么为什么要相信第四层的存在呢。逻辑上,这主要依赖两个独立的假设:假设1物理世界特别是第四层平行宇宙是一个数学结构。
假设2数学民主性,所有数学结构在同一个意义上都在“那里”。
在一篇着名的评论中,魏格纳写道“数学对自然科学的帮助大得神乎其神”,而“这并没有理性的解释”。这个论点可以被看作是对假设1的支持:数学在描述物理世界上的便利,正是后者本身就是数学结构的自然结果,而我们正逐渐认识到这一点。我们现有物理理论中的许多近似理论很成功,原因在于,简单的数学结构能够较好地近似描述SAS怎样感知更复杂的数学结构。换句话说,我们成功的理论并不是模拟物理的数学,而是模拟数学的数学。魏格纳的评论并不是建立在侥幸的巧合基础上,在他提出这个观点的数十年后,自然中更多的数学规则被发现,包括粒子物理的标准模型。
支持假设1的第二个论据就是,抽象数学是如此的一般,以至于任何可用纯形式术语不依赖模糊的人类语言定义的toE也必定是数学结构,例如,一个包含一组不同类型的实体比如,用词语表示以及它们之间的关系用附加词语表示的toE,就是一个集合理论模型,而且我们可以一般地找到它所在的规范体系。
这个论据同样使假设2更令人信服,因为它意味着,任何可能想到的平行宇宙理论都可以在第四层被描述。第四层平行宇宙,被泰格马克称为“终极集合”,因为它包含了所有的集合,从而终结了平行宇宙的层次,不可能再有第五层。考虑一个数学结构的集合也没有增加新内容,因为它只不过是另一个数学结构。考虑另一个经常被讨论的观点,即,宇宙是一个计算机模拟吗。这个想法常在科幻小说中出现,并且实质上也被相信阐述过。数字计算机的信息内容是一串比特,比如“…”,虽然很长但仍有限,等价于一个很大但有限的整数n用二进制写出来。计算机的信息处理就是将一个记忆态变成另一个的确规则反复应用,所以在数学上就是一个函数f,反复地将一个整数映射到另一个上去:ni→f(n)i→f(f(n))i→…
换句话说,即使是最复杂的计算机模拟,也只是一个数学结构的特殊情况,包含在第四层多元宇宙里。
顺带一提,迭代连续函数,而不是整数函数,能形成分形。假设2的另一个吸引人的特性在于,目前,只有它唯一回答了惠勒教授的问题:为什么是这些特殊的方程,而不是别的。